A C++ template library for embedded applications
MIT licensed
Designed and
maintained by
John Wellbelove
Shared Messaging framework
Overview

The shared messaging system allows reference counted messages to be passed through the ETL's messaging
framework. Reference counted messages may be allocated from pools, and which will be returned to the pool when
the reference count reaches zero.

Persistent messages may be created that do not belong to a pool, but which may also be used in a shared message.
___________________________________________________________________________________________________
Shared Messages
shared_message

A shared message encapsulates a pointer to a reference counted message. Each time a shared message is copied, the
reference count is incremented; when destructed, the reference count is decremented. If the reference equals zero
then the reference counted message is returned to the pool (If applicable).

The shared message assumes that the owner pool implements a function or function template that will allocate a
reference counted message from the supplied message type.

For example:
template <typename TMessage>
etl::ireference_counted_message* allocate(const TMessage& message)
___________________________________________________________________________________________________
Reference Counted Messages
reference_counted_message
reference_counted_message_pool

A reference counted message contains a copy of a message and a reference counter. The user may define the type of
the reference counter. For a simple non-threaded, non-iterreupt application the reference counter may be a simple
int, For multi-threaded or interrupt driven messaging systems, a thread safe counter type  must be supplied.
One type that may be used in this circumstance is an atomic type such as std::atomic or etl::atomic (if supported)
To this end a template alias is defined;   etl::atomic_counted_message, which uses an etl::atomic_int32_t as the
counter.

In a muti-threaded or interrupt driven system, a method must be derived to manage access to the pool.

All reference counted messages have an owner.
Owners are obects based on etl::ireference_counted_message_pool

A reference counted message pool will allocate reference counted messages. The storage for these are allocated from
a supplied memory block allocator.

If the pool is being used in a multi-threaded environment or with interrupts then locks may be implemented by
deriving from etl::reference_counted_message_pool and overriding the lock() and unlock() virtual functions.

___________________________________________________________________________________________________
Persistent Messages

An etl::persistent_message is a special type of reference counted message that does not belong to a pool. It will
always have a reference count of 1. These may be used for messages that are fixed in value; i.e. their members do not
change during the lifetime of the application.
___________________________________________________________________________________________________
Memory block allocators
imemory_block_allocator
fixed_sized_memory_block_allocator

Memory block allocators are an addition to the ETL that allows more flexibility when creating custom pools.
All memory block allocators must derive from etl::imemory_block allocator.

Memory block allocators may be chained by setting a successor. If an allocator cannot allocate or release a memory
block, then it will be passed on to the successor allocator for processing.
In this way, a set of memory allocators may be defined, each succeeded by one that handles larger blocks.

The ETL defines a simple, fixed sized, memory block allocator, etl::fixed_sized_memory_block_allocator.
___________________________________________________________________________________________________
Example application

The code below may be found in examples/SharedMessage

//*****************************************************************************
// Shared message example
//*****************************************************************************

#include "etl/shared_message.h"
#include "etl/message.h"
#include "etl/reference_counted_message_pool.h"
#include "etl/message_router.h"
#include "etl/message_bus.h"
#include "etl/fixed_sized_memory_block_allocator.h"
#include "etl/queue.h"

#include <iostream>
#include <atomic>
#include <string>

constexpr etl::message_router_id_t RouterId1 = 1U;
constexpr etl::message_router_id_t RouterId2 = 2U;

//*****************************************************************************
// Message1
//*****************************************************************************
struct Message1 : public etl::message<1>
{
  Message1(std::string s_)
    : s(s_)
  {  
  }
 
  std::string s;
};

//*****************************************************************************
// Message2
//*****************************************************************************
struct Message2 : public etl::message<2>
{
  Message2(std::string s_)
    : s(s_)
  {   
  }
 
  std::string s;
  char data[100];
};

//*****************************************************************************
// Message3
//*****************************************************************************
struct Message3 : public etl::message<3>
{
  Message3(std::string s_)
    : s(s_)
  {
  }

  std::string s;
};

//*****************************************************************************
// Prints the shared message
//*****************************************************************************
void Print(const std::string& prefix, etl::shared_message sm)
{
  std::cout << prefix
            << " : Message Id = "
            << int(sm.get_message().get_message_id()) << "\n";
}

//*****************************************************************************
// This router accepts Message1, Message2 and Message3 types.
// If a shared message it received, it will be processed immediately.
//*****************************************************************************
class MessageRouter1 : public etl::message_router<MessageRouter1,
                                                  Message1,
                                                  Message2,
                                                  Message3>
{
public:

  //****************************************
  MessageRouter1()
    : message_router(RouterId1)
  {
  }

  //****************************************
  void on_receive(const Message1& msg)
  {
    std::cout << "MessageRouter1 : on_receive Message1 : " << msg.s << "\n";
  }

  //****************************************
  void on_receive(const Message2& msg)
  {
    std::cout << "MessageRouter1 : on_receive Message2 : " << msg.s << "\n";
  }

  //****************************************
  void on_receive(const Message3& msg)
  {
    std::cout << "MessageRouter1 : on_receive Message3 : " << msg.s << "\n";
  }

  //****************************************
  void on_receive_unknown(const etl::imessage& msg)
  {
    std::cout << "MessageRouter1 : on_receive Unknown\n";
  }
};

//*****************************************************************************
// This router accepts Message1, Message2 and Message3 types.
// If a shared message it received it will queue them.
// The messages will be processed when process_queue() is called.
//*****************************************************************************
class MessageRouter2 : public etl::message_router<MessageRouter2,
                                                  Message1,
                                                  Message2,
                                                  Message3>
{
public:

  using base_t = etl::message_router<MessageRouter2, Message1, Message2, Message3>;

  //****************************************
  MessageRouter2()
    : message_router(RouterId2)
  {
  }

  using base_t::receive;

  //****************************************
  // Overridden receive.
  // Puts the shared messages into a queue.
  void receive(etl::shared_message shared_msg) override
  {
    if (!queue.full())
    {
      Print("MessageRouter2 : Queueing shared message", shared_msg);

      queue.push(shared_msg );
    }
  }

  //****************************************
  // Processes the queued shared messages.
  void process_queue()
  {
    while (!queue.empty())
    {
      // Get the shared message from the queue.
      etl::shared_message shared_msg = queue.front();

      Print("MessageRouter2 : Process queued shared message", shared_msg);

      // Send it to the base implementation for routing.
      base_t::receive(shared_msg);

      queue.pop();
    }
  }

  //****************************************
  void on_receive(const Message1& msg)
  {
    std::cout << "MessageRouter2 : on_receive Message1 : " << msg.s << "\n";
  }

  //****************************************
  void on_receive(const Message2& msg)
  {
    std::cout << "MessageRouter2 : on_receive Message2 : " << msg.s << "\n";
  }

  //****************************************
  void on_receive(const Message3& msg)
  {
    std::cout << "MessageRouter2 : on_receive Message3 : " << msg.s << "\n";
  }

  //****************************************
  void on_receive_unknown(const etl::imessage& msg)
  {
    std::cout << "MessageRouter2 : on_receive Unknown\n";
  }

private:

  etl::queue<etl::shared_message, 10> queue;
};

//*****************************************************************************
// A message bus that can accomodate two subscribers.
//*****************************************************************************
struct Bus : public etl::message_bus<2U>
{
};

//*****************************************************************************
// The thread safe message pool. Uses atomic uint32_t for counting.
class MessagePool : public etl::reference_counted_message_pool<std::atomic_int32_t>
{
public:

  MessagePool(etl::imemory_block_allocator& allocator)
    : reference_counted_message_pool(allocator)
  {
  }

  // Called before the memory block allocator is accessed.
  void lock() override
  {
    mut.lock();
  }

  // Called after the memory block allocator has been accessed.
  void unlock() override
  {
    mut.unlock();
  }

private:

  std::mutex mut;
};

//*****************************************************************************
// Define the routers and bus.
//*****************************************************************************
MessageRouter1 router1;
MessageRouter2 router2;
Bus bus;

//*****************************************************************************
// The memory block allocator that supplies the pool with memory
// to store reference counted messages in.

// The reference counted message parameters type for the messages we will use.
using message_parameters_small = MessagePool::pool_message_parameters<Message1                                                      
                                                                     Message3>;

using message_parameters_large = MessagePool::pool_message_parameters<Message2>;


constexpr size_t max_size_small      = message_parameters_small::max_size;
constexpr size_t max_alignment_small = message_parameters_small::max_alignment;

constexpr size_t max_size_large      = message_parameters_large::max_size;
constexpr size_t max_alignment_large = message_parameters_large::max_alignment;

// A fixed memory block allocator for 4 items, using the parameters from the smaller messages.
etl::fixed_sized_memory_block_allocator<max_size_small,
                                        max_alignment_small,
                                        4U> memory_allocator;

// A fixed memory block allocator for 4 items, using the parameters from the larger message.
etl::fixed_sized_memory_block_allocator<max_size_large,
                                        max_alignment_large,
                                        4U> memory_allocator_successor;

//*****************************************************************************
// The pool that supplies reference counted messages.
// Uses memory_pool as its allocator.
//*****************************************************************************
MessagePool message_pool(memory_allocator);

//*****************************************************************************
// A statically allocated reference counted message that is never allocated or released by a pool.
// Contains a copy of Message3("Three").
//*****************************************************************************
etl::persistent_message<Message3> pm3(Message3("Three"));

//*****************************************************************************
int main()
{
  // If memory_allocator can't allocate, then try memory_allocator_successor.
  memory_allocator.set_successor(memory_allocator_successor);

  Message1 m1("One");
  Message2 m2("Two");
 
  // Created a shared message by allocating a reference counted message from message_pool
  // containing a copy of m1.
  etl::shared_message sm1(message_pool, m1);

  // Created a shared message by allocating a reference counted message from message_pool
  // containing a copy of m2.
  etl::shared_message sm2(message_pool, m2);

  // Created a shared message from a statically allocated persistent message.
  etl::shared_message sm3(pm3);

  bus.subscribe(router1); // Subscribe router1 to the bus.
  bus.subscribe(router2); // Subscribe router2 to the bus.

  bus.receive(sm1); // Send sm1 to the bus for distribution to the routers.
  bus.receive(sm2); // Send sm2 to the bus for distribution to the routers.
  bus.receive(sm3); // Send sm3 to the bus for distribution to the routers.

  router2.process_queue(); // Allow router2 to process its queued messages.
}

Tutorial